Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liao, Min-Ken (Ed.)ABSTRACT The Genomics Education Partnership (GEP;thegep.org) is a collaboration of more than 260 faculty from over 200 colleges and universities across the continental United States and Puerto Rico, all of whom are engaged in bringing Course-based Undergraduate Research Experiences (CUREs) centered in genomics and bioinformatics to their students. The purpose of the GEP-CURE is to ensure all undergraduate students have access to research experiences in genomics, regardless of the funding and resources available at their institutions. The GEP community provides many resources to facilitate implementation of the genomics curriculum at collaborating institutions, including extensive support for both faculty and undergraduate students. Faculty receive training to implement the curriculum, ongoing professional development, access to updated curriculum, and a community of practitioners. During the COVID-19 pandemic, the GEP developed a virtual learning assistant (LA) program to provide real-time support in GEP activities and research to all students, regardless of their institution, while they were participating in the GEP-CURE. A mixed-methods descriptive study was conducted about this program and draws from quantitative data gathered about the scope and use of the program, as well as the value of the program, as indicated by the undergraduates themselves from their post-course survey responses. Additionally, seven LAs who served in this role between 2021 and 2023 participated in interviews to help the GEP better understand how this resource was used by GEP students, the needs of the students, and to identify the conditions in which this resource could be replicated in other courses.more » « lessFree, publicly-accessible full text available April 24, 2026
-
This descriptive study examines the experiences of virtually-trained new members in a hybrid distributed community of practice (CoP) focused on undergraduate genomics education. We utilized a sequential explanatory mixed methods research design consisting of an engagement survey for all community members (n=124), followed by interviews with new members (n=15). Survey analysis identifies several areas in which new members do not differ from members with longer involvement, including in motivations for involvement, levels of engagement, satisfaction, and perceived benefits of community involvement. These findings indicate ways in which virtual training and integration was able to facilitate important community outcomes within a new, online context. Our interviews reveal important elements of training new CoP members, including onboarding, implementation, and community engagement opportunities, that successfully facilitated new members’ integration into the community and contributed to their meeting the aforementioned outcomes. The findings of this study provide useful lessons and structures for growing communities through virtual means.more » « less
-
Annotating the genomes of multiple species allows us to analyze the evolution of their genes. While many eukaryotic genome assemblies already include computational gene predictions, these predictions can benefit from review and refinement through manual gene annotation. The Genomics Education Partnership (GEP; https://thegep.org/ ) developed a structural annotation protocol for protein-coding genes that enables undergraduate student and faculty researchers to create high-quality gene annotations that can be utilized in subsequent scientific investigations. For example, this protocol has been utilized by the GEP faculty to engage undergraduate students in the comparative annotation of genes involved in the insulin signaling pathway in 27 Drosophila species, using D. melanogaster as the reference genome. Students construct gene models using multiple lines of computational and empirical evidence including expression data (e.g., RNA-Seq), sequence similarity (e.g., BLAST and multiple sequence alignment), and computational gene predictions. Quality control measures require each gene be annotated by at least two students working independently, followed by reconciliation of the submitted gene models by a more experienced student. This article provides an overview of the annotation protocol and describes how discrepancies in student submitted gene models are resolved to produce a final, high-quality gene set suitable for subsequent analyses. The protocol can be adapted to other scientific questions (e.g., expansion of the Drosophila Muller F element) and species (e.g., parasitoid wasps) to provide additional opportunities for undergraduate students to participate in genomics research. These student annotation efforts can substantially improve the quality of gene annotations in publicly available genomic databases.more » « less
-
Marshall, Pamela Ann (Ed.)ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education.more » « less
An official website of the United States government

Full Text Available